In ihrer Studie betrachteten die Forschenden die ersten Zellteilungen nach der Befruchtung einer Eizelle von Mäusen und Hasen. Dabei stellten sie fest, dass dieser Prozess bis zum Ende des 8-Zellstadiums von Mal zu Mal unterschiedlich abläuft, sowohl zeitlich als auch räumlich. „Die Verdoppelungsrate der Stammzellen variiert zufällig über die Generationen hinweg. Manchmal geht es schneller, dann wieder dauert es etwas länger“, berichtet Bernat Corominas Murtra, Assistenzprofessor am Institut für Biologie und im Profilbereich COLIBRI (Complexity of Life in Basic Research and Innovation) der Uni Graz.
Auch die geometrische Struktur folgte anfänglich offenbar keinem Plan. „Die Zellen sammelten sich nach ihrer Teilung zu unterschiedlichen Gebilden zusammen. Erst am Ende des 8-Zellstadiums, nach Abschluss des sogenannten Verdichtungsprozesses, hatten fast alle Komplexe eine ganz bestimmte Konfiguration“, schildert der Wissenschaftler. Die Studienautor:innen konnten zeigen, dass diese spezifische Anordnung optimale Bedingungen für die weiteren Teilungen bis zum 16-Zellstadium bietet. „Wichtig ist, wie viele Zellen in der Konfiguration innen und wie viele außen positioniert sind. Das richtige Verhältnis ist entscheidend für die Lebensfähigkeit des Organismus. Aus den inneren entwickelt sich das Tier selbst, aus den äußeren die Plazenta und anderes embryonales Material“, erklärt Corominas Murtra.
Unordnung als treibende schöpferische Kraft
Es ist wie beim Rubik's Cube – im Deutschen als „Zauberwürfel“ bekannt: Aus willkürlich angeordneten Zellen wird durch Verlagerungen ein Ganzes nach Plan. Aber wie löst der Embryo diese Aufgabe? „Die Antwort liegt in fundamentalen Prinzipien der Physik und Mathematik“, sagt Corominas Murtra: „Eine genetisch codierte leichte Zunahme der Kraft, mit der die Zellen aneinanderhaften, gekoppelt mit signifikanten zufälligen Veränderungen der Zellpositionen – also Unordnung –, erleichtert paradoxerweise den Übergang von einer beliebigen Zellpackung zu einer einzigen optimalen Konfiguration“, so der Physiker.
Diese Interpretation ebnet den Weg für ein neues Verständnis davon, wie komplexe Geometrien und allgemeine Organisationsmuster in Lebewesen entstehen. „Unordnung ist also keineswegs ein Problem, mit dem das System fertig werden muss. Vielmehr kann sie eine der treibenden Kräfte für Präzision in der Entwicklung von Organismen sein“, unterstreicht Corominas Murtra.
Publikation
Temporal variability and cell mechanics control robustness in mammalian embryogenesis
Dimitri Fabrèges, Takashi Hiiragi, Edouard Hannezo, Bernat Corominas Murtra
Science, 10.10.2024, DOI 10.1126/science.adh1145